Modification and Compensation Strategies for Threshold-based Incomplete Factorizations
نویسندگان
چکیده
منابع مشابه
Modification and Compensation Strategies for Threshold-based Incomplete Factorizations
Standard (single-level) incomplete factorization preconditioners are known to successfully accelerate Krylov subspace iterations for many linear systems. The classical Modified Incomplete LU (MILU) factorization approach improves the acceleration given by (standard) ILU approaches, by modifying the non-unit diagonal in the factorization to match the action of the system matrix on a given vector...
متن کاملApproximate and Incomplete Factorizations
In this chapter, we give a brief overview of a particular class of preconditioners known as incomplete factorizations. They can be thought of as approximating the exact LU factorization of a given matrix A (e.g. computed via Gaussian elimination) by disallowing certain ll-ins. As opposed to other PDE-based preconditioners such as multigrid and domain decomposition, this class of preconditioners...
متن کاملScalable Tensor Factorizations for Incomplete Data
The problem of incomplete data—i.e., data with missing or unknown values—in multi-way arrays is ubiquitous in biomedical signal processing, network traffic analysis, bibliometrics, social network analysis, chemometrics, computer vision, communication networks, etc. We consider the problem of how to factorize data sets with missing values with the goal of capturing the underlying latent structur...
متن کاملIncremental incomplete LU factorizations with applications
This paper addresses the problem of computing preconditioners for solving linear systems of equations with a sequence of slowly varying matrices. This problem arises in many important applications. For example, a common situation in computational fluid dynamics, is when the equations change only slightly, possibly in some parts of the physical domain. In such situations it is wasteful to recomp...
متن کاملA Stability Analysis of Incomplete LU Factorizations
The combination of iterative methods with preconditionings based on incomplete LU factorizations constitutes an effective class of methods for solving the sparse linear systems arising from the discretization of elliptic partial differential equations. In this paper, we show that there are some settings in which the incomplete LU preconditioners are not effective, and we demonstrate that their ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2012
ISSN: 1064-8275,1095-7197
DOI: 10.1137/110834986